Прямая пропорциональность и её график. Прямая пропорциональность и её график График прямой пропорциональности проходит

В 7 и 8 классе изучается график прямой пропорциональности.

Как построить график прямой пропорциональности?

Рассмотрим на примерах график прямой пропорциональности.

График прямой пропорциональности формула

График прямой пропорциональности представляет функцию .

В общем виде прямая пропорциональность имеет формулу

От величины и знака коэффициента прямой пропорциональности зависит угол наклона графика прямой пропорциональности по отношению к оси икс.

График прямой пропорциональности проходит

График прямой пропорциональности проходит через начало координат.

График прямой пропорциональности есть прямая. Прямая задается двумя точками.

Таким образом при построении графика прямой пропорциональности достаточно определить положение двух точек.

Но одну из них мы всегда знаем - это начало координат.

Осталось найти вторую. Посмотрим пример построения графика прямой пропорциональности.

Постройте график прямой пропорциональности y = 2x

Задача .

Постройте график прямой пропорциональности, заданной формулой

Решение .

Есть все числа.

Берем любое число из области определения прямой пропорциональности, пусть это будет 1.

Найти значение функции при икс равное 1

Y = 2x =
2 * 1 = 2

то есть при x = 1 получаем y = 2. Точка с этими координатами принадлежит графику функции y = 2x.

Мы знаем, что график прямой пропорциональности есть прямая, а прямая задается двумя точками.

Как строить графики прямой пропорциональности?

Постройте график прямой пропорциональности заданной формулой y = 3x

Решение .

Функция y = 3x определена на всей числовой прямой. См. .

Берем любое значение икс, пусть это будет 1, и находим игрек, подставляя икс равное 1 в формулу y = 3x

Y = 3x =
3 * 1 = 3

то есть при x = 1 получаем y = 3. Точка с этими координатами принадлежит графику функции y = 3x.

Мы знаем, что график прямой пропорциональности есть прямая, а прямая задается двумя точками.

Одну из них мы только что нашли, а второй для прямой пропорциональности всегда является начало координат.

Теперь мы готовы построить график функции y = 3x.

Отмечаем на координатной плоскости точку с координатами (1; 3).

Через данную точку и начало координат проводим прямую линию

Мы получили график прямой пропорциональности, заданной формулой y = 3x.

Найдите по графику значение y, соответствующее значению x = 2.

Находим на оси иксов точку 2.

Проводим через неё вертикальную линию до пересечения с графиком.

Проводим горизонтальную линию до оси игреков. На оси игрек выходим на точку 6.

6 и есть значение игрек, соответствующее значению x = 2.

Определение прямой пропорциональности

Для начала напомним следующее определение:

Определение

Две величины называются прямо пропорциональными, если их отношение равно конкретному, отличному от нуля числу, то есть:

\[\frac{y}{x}=k\]

Отсюда мы видим, что $y=kx$.

Определение

Функция вида $y=kx$ называется прямой пропорциональностью.

Прямая пропорциональность является частным случаем линейной функции $y=kx+b$ при $b=0$. Число $k$ называется коэффициентом пропорциональности.

Примером прямой пропорциональности может служить второй закон Ньютона : Ускорение тела прямо пропорционально приложенной к нему силе:

Здесь масса -- коэффициент пропорциональности.

Исследование функции прямой пропорциональности $f(x)=kx$ и её график

Вначале рассмотрим функцию $f\left(x\right)=kx$, где $k > 0$.

  1. $f"\left(x\right)={\left(kx\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
  2. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
  3. График (рис. 1).

Рис. 1. График функции $y=kx$, при $k>0$

Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

  1. Область определения -- все числа.
  2. Область значения -- все числа.
  3. $f\left(-x\right)=-kx=-f(x)$. Функция прямой пропорциональности нечетна.
  4. Функция проходит через начало координат.
  5. $f"\left(x\right)={\left(kx\right)}"=k
  6. $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
  7. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
  8. График (рис. 2).

Рис. 2. График функции $y=kx$, при $k

Важно: для построения графика функции $y=kx$ достаточно найти одну, отличную от начала координат точку $\left(x_0,\ y_0\right)$ и провести прямую через эту точку и начало координат.

Понравилась статья? Поделиться с друзьями: