Первые атомные электростанции и их роль в развитии ядерной энергетики. Ядерный отряд: создатели первой в мире АЭС Первая атомная электростанция

Атомные электростанции представляют собой, ядерные установки производящие энергию, соблюдая при этом заданные режимы при определённых условиях. Для этих целей используется определённая проектом территория, где для выполнения поставленных задач используют ядерные реакторы в комплексе с необходимыми системами, устройствами, оборудованием и сооружениями. Для выполнения целевых задач привлекается специализированный персонал.

Все атомные электростанции России

История атомной энергетики у нас в стране и за рубежом

Вторая половина 40 –х гг., ознаменовалась началом работ по созданию первого проекта, предполагающего использование мирного атома для генерации электроэнергии. В 1948 году, И.В. Курчатов, руководствуясь заданием партии и советского правительства, внёс предложение о начале работ по практическому использованию атомной энергии, для вырабатывания электроэнергии.

Спустя два года, в 1950г., неподалёку от посёлка Обнинское, расположенного в Калужской области, был дан старт строительству первой на планете АЭС. Запуск первой в мире промышленной атомной электростанции, мощность которой, составляла 5МВт, состоялся 27.06.1954г. Советский Союз стал первой в мире державой, которой удалось применить атом в мирных целях. Станция была открыта в получившем к тому времени статус города, Обнинске.

Но советские учёные не остановились на достигнутом, ими были продолжены работы в этом направлении, в частности всего четыре года спустя в 1958г., была начата эксплуатация первой очереди Сибирской АЭС. Её мощность в разы превосходила станцию в Обнинске и составляла 100МВт. Но для отечественных учёных и это, не было пределом, по завершению всех работ, проектная мощность станции составила 600МВт.

На просторах Советского Союза, строительство АЭС, приняло по тем временам, массовые масштабы. В том же году, была развёрнута стройка Белоярской АЭС, первая очередь которой, уже в апреле 1964 году снабдила первым потребителей. География строительства атомных станций, опутала своей сетью всю страну, в этом же году запустили первый блок АЭС в Воронеже, его мощность равнялась 210МВт, второй блок запущенный пять лет спустя в 1969 году, мог похвастаться мощностью в 365МВт. бум строительства АЭС, не стихал на протяжении всей советской эпохи. Новые станции, или дополнительные блоки уже построенных, запускались с периодичностью в несколько лет. Так, уже в 1973 году, собственную АЭС, получил Ленинград.

Однако Советская держава не была единственной в мире, кому было под силу осваивать такие проекты. В Великобритании, также не дремали и, понимая перспективность данного направления, активно изучали этот вопрос. Спустя всего два года, поле открытия станции в Обнинске, англичане запустили собственный проект по освоению мирного атома. В 1956г, городке Колдер – Холл британцами была запущенная своя станция, мощность которой, превышала советский аналог и составляла 46МВт. Не отставали и на другом берегу Атлантики, год спустя американцы торжественно запустили в эксплуатацию станцию в Шиппингпорте. Мощность объекта составила 60МВт.

Однако освоение мирного атома таило в себе скрытые угрозы, о которых вскоре узнал весь мир. Первой ласточкой стала крупная авария в Три – Майл – Айленд произошедшая в 1979г., ну а вслед за ней произошла катастрофа поразившая весь мир, в Советском Союзе, в небольшом городе Чернобыле произошла крупномасштабная катастрофа, это случилось в 1986году. Последствия трагедии были невосполнимы, но кроме этого, данный факт, заставил задуматься весь мир о целесообразности использования ядерной энергии в мирных целях.

Мировые светила в данной отрасли, всерьёз задумались о повышении безопасности ядерных объектов. Итогом стало проведение учредительной ассамблеи, которая была организована 15.05.1989г в советской столице. На ассамблее приняли решение о создании Всемирной ассоциации, в которую должны войти все операторы атомных электростанций, её общепризнанной аббревиатурой является WANO. В ходе реализации своих программ, организация планомерно следит за повышением уровня безопасности атомных станций в мире. Однако, несмотря на все приложенные усилия, даже самые современные и на первый взгляд кажущиеся безопасными объёкты, не выдерживают натиска стихий. Именно по причине эндогенной катастрофы, которая проявилась в форме землетрясения и последовавшего за ним цунами в 2011 году произошла авария на станции Фукусима – 1.

Атомный блэкаут

Классификация АЭС

Атомные станции классифицируются по двум признакам, по виду энергии которую они выпускают и по типу реакторов. В зависимости от типа реактора определяется количество вырабатываемой энергии, уровень безопасности, а также то, какое именно сырьё применяется на станции.

По типу энергии, которую производят станции, они делятся на два вида:

Их основной функцией является выработка электрической энергии.

Атомные теплоэлектростанции. За счёт установленных там теплофикационных установок, использующих тепловые потери, которые неизбежны на станции, становится возможен нагрев сетевой воды. Таким образом, данные станции помимо электроэнергии вырабатывают тепловую энергию.

Исследовав множество вариантов, учёные пришли к выводу, что наиболее рациональными являются три их разновидности, которые в настоящее время и применяются во всём мире. Они отличаются по ряду признаков:

  1. Используемое топливо;
  2. Применяемые теплоносители;
  3. Активные зоны, эксплуатируемые для поддержания необходимой температуры;
  4. Тип замедлителей, определяющий снижение скорости нейтронов, которые выделяются при распаде и так необходимые, для поддержки цепной реакции.

Самым распространённым типом, является реактор, использующий в качестве топлива обогащённый уран. В качестве теплоносителя и замедлителя здесь используется обыкновенная или лёгкая вода. Такие реакторы называют лёгководными, их известно две разновидности. В первом, пар служащий для вращения турбин, образуется в активной зоне, называемой кипящим реактором. Во втором, образование пара происходит во внешнем контуре, который связан с первым контуром посредством теплообменников и парогенераторов. Данный реактор, начали разрабатывать в пятидесятых годах прошлого столетия, основой для них, были армейские программы США. Параллельно, примерно в эти же сроки, в Союзе разработали кипящий реактор, в качестве замедлителя у которого, выступал графитовый стержень.

Именно тип реактора с замедлителем данного типа и нашёл применение на практике. Речь идёт о газоохлаждаемом реакторе. Его история началась в конце сороковых, начале пятидесятых годов XX века, первоначально разработки данного типа использовались при производстве ядерного оружия. В связи с этим, для него подходят два вида топлива, это оружейный плутоний и природный уран.

Последним проектом, которому сопутствовал коммерческий успех, стал реактор, где в качестве теплоносителя применяется тяжёлая вода, в качестве топлива используется уже хорошо нам знакомый природный уран. Первоначально, такие реакторы проектировали несколько стран, но в итоге их производство сосредоточилось в Канаде, чему служит причиной, наличие в этой стране массовых залежей урана.

Ториевые АЭС -- энергетика будущего?

История совершенствования типов ядерных реакторов

Реактор первой на планете АЭС, представлял собой весьма разумную и жизнеспособную конструкцию, что и было доказано в ходе многолетней и безупречной работы станции. Среди его составных элементов выделяли:

  1. боковую водную защиту;
  2. кожух кладки;
  3. верхнее перекрытие;
  4. сборный коллектор;
  5. топливный канал;
  6. верхнюю плиту;
  7. графитовую кладку;
  8. нижнюю плиту;
  9. распределительный коллектор.

Основным конструкционным материалом для оболочек ТВЭЛ и технологических каналов была избрана нержавеющая сталь, на тот момент, не было известно о циркониевых сплавах, которые могли бы, подходить по свойствам для работы с температурой 300°С. Охлаждение такого реактора осуществлялось водой, при этом давление под которым она подавалась, составляло 100ат. При этом выделялся пар с температурой 280°С, что является вполне умеренным параметром.

Каналы ядерного реактора были сконструированы таким образом, чтобы была возможность их полностью заменить. Это связано с ограничением ресурса, которое обусловлено временем нахождения топлива в зоне активности. Конструкторы не нашли оснований рассчитывать на то, что конструкционные материалы расположенные в зоне активности под облучением, смогут выработать весь свой ресурс, а именно порядка 30 лет.

Что касается конструкции ТВЭЛ, то было решено принять трубчатый вариант с односторонним механизмом охлаждения

Это уменьшало вероятность того, что продукты деления попадут в контур в случае повреждения ТВЭЛ. Дл регуляции температуры оболочки ТВЭЛ, применили топливную композицию ураномолибденового сплава, который имел вид крупки, диспергированной посредством тепловодной матрицы. Обработанное таким образом ядерное горючее позволило получить высоконадёжные ТВЭЛ. которые были способны работать при высоких тепловых нагрузках.

Примером следующего витка развития мирных ядерных технологий может, послужить печально известная Чернобыльская АЭС. На тот момент технологии, применённые при её строительстве, считались наиболее передовыми, а тип реактора современнейшим в мире. Речь идёт о реакторе РБМК – 1000.

Тепловая мощность одного такого реактора достигала 3200МВт, при этом он располагает двумя турбогенераторами, электрическая мощность которых, достигает 500МВт, таким образом, один энергоблок обладает электрической мощностью 1000МВт. В качестве топлива для РБМК использовалась обогащённая двуокись урана. В исходном состоянии перед началом процесса одна тонна такого топлива содержит порядка 20кг горючего, а именно урана – 235. При стационарной загрузке двуокиси урана в реактор масса вещества составляет 180т.

Но процесс загрузки не представляет собой навал, в реактор помещают тепловыделяющие элементы, уже хорошо нам известные ТВЭЛ. По сути, они являются трубками, для создания которых применён циркониевый сплав. В качестве содержимого, в них помещаются таблетки двуокиси урана, обладающие цилиндрической формой. В зоне активности реактора их помещают в тепловыделяющие сборки, каждая из которых объединяет 18 ТВЭЛ.

Таких сборок в подобном реакторе насчитывается до 1700 штук, и размещаются они в графитовой кладке, где специально для этих целей сконструированы технологические каналы вертикальной формы. Именно в них происходит циркуляция теплоносителя, роль которого, в РМБК, выполняет вода. Водоворот воды происходит при воздействии циркуляционных насосов, коих насчитывается восемь штук. Реактор находится внутри шахты, а графическая кладка находится в цилиндрическом корпусе толщиной в 30мм. Опорой всего аппарата является бетонное основание, под которым находится бассейн – барботер, служащий для локализации аварии.

Третье поколение реакторов использует тяжёлую воду

Основным элементом которой, является дейтерий. Наиболее распространённая конструкция носит название CANDU, она была разработана в Канаде и широко применяется по всему миру. Ядро таких реакторов располагается в горизонтальном положении, а роль нагревательной камеры играют резервуары цилиндрической формы. Топливный канал тянется через всю нагревательную камеру, каждый из таких каналов, обладает двумя концентрическими трубками. Существуют внешняя и внутренняя трубки.

Во внутренней трубке, топливо находится под давлением теплоносителя, что позволяет дополнительно заправлять реактор в процессе работы. Тяжёлая вода с формулой D20 используется в качестве замедлителя. В ходе замкнутого цикла происходит прокачка воды по трубам реактора, содержащего пучки топлива. В результате ядерного деления выделяется тепло.

Цикл охлаждения при использовании тяжёлой воды заключается в прохождении через парогенераторы, где от выделяемого тяжёлой водой тепла закипает обыкновенная вода, в результате чего, образуется пар, выходящий под высоким давлением. Он распределяется обратно в реактор, в результате чего возникает замкнутый цикл охлаждения.

Именно по такому пути, происходило пошаговое совершенствование типов ядерных реакторов, которые использовались и используются в различных странах мира.

Обнинская АЭС.

Шестьдесят лет назад в городе Обнинск Калужской области первая в мире атомная электростанция с реактором АМ-1 (Атом мирный) дала промышленный ток. Реактор АМ-1 представлял собой охлаждаемый водой под давлением графитовый реактор канального типа на тепловых нейтронах с трубчатыми твэлами. Тепловая мощность реактора составляла примерно 30 МВт. Электрическая мощность первой АЭС в разные годы была от 3 до 5 МВт, КПД доходил до 17%. Топливная загрузка — примерно 560 кг урана, обогащённого по урану-235 до 10 или 5%.

«Строительство первой промышленной атомной электростанции в СССР мощностью 5000 кВт было закончено в 1954 г., и 27 июня 1954 г. станция уже вырабатывала электрический ток за счёт энергии деления ядер урана», — говор ится в докладе , представленном Д. И. Блохинцевым и Н. А. Николаевым на Международной конференции ООН по мирному использованию атомной энергии, состоявшейся в Женеве 8-20 августа 1955 года.

Схема реактора Первой АЭС. Фото: aes1.ru

Работа реактора Обнинской АЭС была остановлена 29 апреля 2002 г. из-за нерентабельности. «Станция была остановлена исключительно по экономическим соображениям, поскольку поддержание её в безопасном состоянии с каждым годом становилось все дороже и дороже», — сообщает сайт ГНЦ РФ – ФЭИ , в ведении которого в настоящее время находится первая АЭС. В настоящее время атомная станция является отраслевым мемориальным комплексом.

«Сейчас топливо выгружено, большая часть радиоактивного оборудования вывезена, но графит реактора остался. Пока не понятно, что лучше: вывозить реакторный графит или оставить его на месте, — рассказал Михаил Жайдин, научный руководитель Отраслевого мемориального комплекса «Первая в мире атомная электростанция» в телефонном интервью «Беллоне.Ру», — Вопрос работ по выводу из эксплуатации всё ещё остаётся в тени, это не вопрос к музею АЭС. Есть разные идеи — например, сохранить первую АЭС как музей. Но это должно решать Правительство. Ведь не существует нормативных документов, позволяющих радиационно-опасным объектам функционировать как музеи. Сейчас АЭС находится на балансе ФЭИ. Вопрос в том, кто далее будет содержать АЭС-музей, кто будет платить за это».

Гонка за «мирным атомом»

Тема «мирного атома» в середине 1950-х годов стала одним из горячих вопросов противостояния СССР и США. В 1953 году президент США Дуайт Эйзенхауэр (Dwight D. Eisenhower) выступил на Генеральной Ассамблее ООН с речью «Atoms for Peace», в которой провозгласил начало мирного использования атомной энергии в США. Во многом программа «Atoms for Peace» носила пропагандистский характер, одной из её целей было оправдания растущих военных расходов. Советский «Мирный атом» воплотился в Обнинской АЭС, которая стала использоваться для пропаганды миролюбивого курса и технических достижений социализма.

Фото: aes1.ru

«Атом мирный» в череде военных реакторов

В 1954 году в СССР в эксплуатации находилось довольно много ядерных реакторов. На комбинате «Маяк» в Челябинской области работали пять уран-графитовых реакторов: А (с 1948 года), АИ (с 1951 г.), АВ-1 (с 1950 г.), АВ-2 (с 1951 г.), АВ-3 (с 1952 г.). По компоновке и основным инженерным решениям эти реакторы были близки к обнинскому АМ-1: графитовая кладка, технологические каналы, вертикальная активная зона. Тепловая мощность этих реакторов достигала сотен МВт и превосходила мощность «Атома Мирного». Готовились к пуску уран-графитовые реакторы И-1 и ЭИ-2 на Сибирском химкомбинате близ Томска (запущены в 1955 и 56 годах). Таким образом, в начале 1950-х годов в СССР каждый год вводился в строй атомный реактор военного назначения. В 1954 году в их ряду появился «Атом Мирный».

АЭС или экспериментальный реактор?

Не утихают споры, чем же на самом деле является Обнинская станция — первой в мире коммерческой атомной электростанцией, или экспериментальной установкой, лишь демонстрирующей возможность выработки электроэнергии при помощи энергии деления ядер урана?

Ряд зарубежных исследователей считает первой коммерческой электростанцией американскую АЭС Шиппингпорт (Shippingport), введённую в строй в Пенсильвании в мае 1958 года и выведенную из эксплуатации в 1989 году. Реактор с водой под давлением (предшественник российских ВВЭР) на АЭС Шиппингпорт имел тепловую мощность около 200 МВт, АЭС выдавала электрическую мощность 60 МВт, за 25 лет работы выработано 7,4 миллиарда кВтч электроэнергии.

Показатели Обнинской АЭС намного скромнее. На сайте музея первой АЭС отсутствует информация о том, сколько же электрической и тепловой энергии она выработала за всё время работы..

Михаил Жайдин сообщил, что точно не известно, сколько лет Обнинская станция работала в режиме выработки электроэнергии. «Есть даже такая шутка: «То ли АЭС даёт энергию, то ли АЭС берёт энергию, — говорит он: — Данные о выработке электрической и тепловой энергии не актуальны. Это была исследовательская станция. Она работала в разных режимах, на разных мощностях. Станция была значима как научный, экспериментальный, образовательный центр».

Действительно, с момента начала работы на Обнинской АЭС были введены в строй ряд экспериментальных установок и стендов, на которых отрабатывались различные реакторные технологии. На Обнинской АЭС проходили тренировку экипажи первых советских атомных подводных лодок.

Впрочем, в документах Росатома, Ростехнадзора и ГНЦ РФ — ФЭИ рекатор АЭС называется « ИРАМ » , что означает « исследовательский реактор АМ » .

Фото: aes1.ru

Экономика

Как и любая экспериментальная установка, Обнинская станция не смогла стать экономически эффективной. Даже при весьма своеобразном ценообразовании в СССР, сделать конкурентоспособной атомную электроэнергию первой АЭС не удалось. «Стоимость 1 кВт*ч электрической энергии, вырабатываемой на станции, значительно превышает среднюю себестоимость 1 кВт*ч мощных тепловых электростанций в СССР», — признаётся в докладе на Международной конференции ООН по мирному использованию атомной энергии 1955 года: — «Анализ стоимости 1 кВт*ч энергии, вырабатываемой на первой атомной станции, показывает, что высокая его себестоимость обусловлена в первую очередь малыми размерами станции, большими затратами на штучное изготовление тепловыделяющих элементов, повышенным расходом урана-235 вследствие малых размеров атомного реактора, а также рядом особенностей конструкции на этой станции, направленных к созданию повышенной надёжности работы, от которых, как показывает опыт эксплуатации, можно отказаться».

Конечно, в документе 1955 года весьма странным видится ссылка на «опыт эксплуатации», составлявший к тому времени около года. В то время у атомной энергетики впереди ещё были такие сводящие на нет атомный оптимизм события, как аварии на АЭС Три Майл Айленд, на Чернобыльской АЭС и АЭС Фукусима-1. Тогда казалось, что стоимость атомного электричества можно снизить, увеличив мощность АЭС и удешевив строительство АЭС, в первую очередь за счёт упрощения конструкции реакторов и систем безопасности.

Фото: aes1.ru

И если первое сделать удалось, например, прямым развитием реактора АМ-1 стали уран-графитовые канальные реакторы РБМК-1000 тепловой мощностью 3 ГВт, то вторая задача выполнена не была. После серии радиационных аварий и катастроф требования к системам безопасности современных АЭС возрастают, растёт и стоимость их сооружения. И даже сейчас, как и 60 лет назад, полная стоимость атомного электричества заметно превышает стоимость электроэнергии станций, работающих на природном газе. Этот тезис доказан в : «электричество ядерных электростанций уже сейчас стоит дороже потребителю, чем то, что вырабатывают газовые станции. … Государство предоставляет отрасли практически бесплатный капитал, несет непокрытые страховыми премиями атомные риски, в значительной степени участвует в прямом финансировании ядерного топливного цикла»

Сейчас будущее атомной энергетики уже не кажется столь безоблачным, как это представлялось в 1954 году. Но в любом случае, Обнинская АЭС остаётся памятником той эпохе, эпохе гонки вооружений, холодной войны и горячего оптимизма по отношению к атомной энергетике.

Прошедшей эпохе…

Photo: aes1.ru

Атомная электростанция или сокращенно АЭС это комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Во второй половине 40-х годов, перед тем, как были закончены работы по созданию первой атомной бомбы которая была испытана 29 августа 1949 года, советские ученые приступили к разработке первых проектов мирного использования атомной энергии. Основным направлением проектов была электроэнергетика.

В мае 1950 года в районе поселка Обнинское Калужской области, начато строительство первой в мире АЭС.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США.

Для проверки работоспособности генератор был подключен к четырем лампам накаливания, ни то не ожидал, что лампы зажгутся.

С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать .


В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.

Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.

В 1973 г. запущена Ленинградская АЭС.

В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.

В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами в производстве ядерной электроэнергии являются:

  1. США (788,6 млрд кВт ч/год),
  2. Франция(426,8 млрд кВт ч/год),
  3. Япония (273,8 млрд кВт ч/год),
  4. Германия (158,4 млрд кВт ч/год),
  5. Россия (154,7 млрдкВт ч/год).

Классификация АЭС

Атомные электростанции можно классифицировать по нескольким направлениям:

По типу реакторов

  • Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятностипоглощения нейтрона ядрами атомов топлива
  • Реакторы на лёгкой воде
  • Реакторы на тяжёлой воде
  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы

По виду отпускаемой энергии

  1. Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  2. Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На атомных станциях, расположенных на территории России имеются теплофикационные установки, они необходимы для подогрева сетевой воды.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых , его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы - это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых , использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», - он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов - ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Как происходит переработка топлива АЭС

Спустя год использования урана в ядерных реакторах необходимо производить его замену.

Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.

В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них делают свежее ядерное топливо.

Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.

Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.

Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.

Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.

По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.

Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.

Принцип работы АЭС

Принцип работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР).

Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура.

На выходе из турбин, пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.


Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ.

Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор).

Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Устройство ядерного реактора

В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.

Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.

Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.

Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.

При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.

Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.

Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

Основные элементы ядерного реактора

  • Ядерное топливо: обогащённый уран, изотопы урана и плутония. Чаще всего используется уран 235;
  • Теплоноситель для вывода энергии, которая образуется при работе реактора: вода, жидкий натрий и др.;
  • Регулирующие стержни;
  • Замедлитель нейтронов;
  • Оболочка для защиты от излучения.

Принцип действия ядерного реактора

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо.

Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.

ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня.

Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.

В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.

Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.

Это и есть цепная реакция - принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).

Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.

Преобразование ядерной энергии в электрическую можно представить схематично:

  • Внутренняя энергия уранового ядра
  • Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов
  • Внутренняя энергия воды и пара
  • Кинетическая энергия воды и пара
  • Кинетическая энергия роторов турбины и генератора
  • Электрическая энергия

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.

Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

  • Сибирская АЭС, поставляющая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химического комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

  • Воронежская АСТ
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

Недостатки и преимущества АЭС

Любой инженерный проект имеет свои положительные и отрицательные стороны.

Положительные стороны атомных станций:

  • Отсутствие вредных выбросов;
  • Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (золаугольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
  • Небольшой объём используемого топлива и возможность его повторного использования после переработки;
  • Высокая мощность: 1000-1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.

Отрицательные стороны атомных станций:

  • Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
  • Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе - и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Что такое КПД

Коэффициент полезного действия (КПД) - характеристика эффективности системы или устройства в отношении преобразования или передачи энергии.

Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой. КПД является безразмерной величиной и часто измеряется в процентах.

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Первая электростанция в мире

Самая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.

Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.

На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.

Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.

Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.

30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.

На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.

Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.

В 1882 году Роберт Хаммонд основал компанию Hammond Electric Light , а 27 февраля 1882 года он открыл электростанцию Gloucester Road.

Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.

В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.

Электростанция Зимнего дворца

В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.

Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.


Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.

Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.

9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.

Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».

Как выглядела станция

Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.

Первыми осветили часть парадных помещений:

  • Аванзал
  • Петровский зал
  • Большой фельдмаршальский зал
  • Гербовый зал
  • Георгиевский зал
Было предложено три режима освещения:
  • полное (праздничное) включать пять раз в году (4888 ламп накаливания и 10 свечей Яблочкова);
  • рабочее – 230 ламп накаливания;
  • дежурное (ночное) – 304 лампы накаливания.
    Станция потребляла около 30 тыс. пудов (520 т) угля в год.

Крупные ТЭС, АЭС и ГЭС России

Крупнейшие электростанции России по федеральным округам:

Центральный:

  • Костромская ГРЭС, которая работает на мазуте;
  • Рязанская станция, основным топливом для которой является уголь;
  • Конаковская, которая может работать на газе и мазуте;

Уральский:

  • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работают на природном газе;
  • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале;
  • Троицкая, также работающая на угле;
  • Ириклинская, главным источником топлива для которой является мазут;

Приволжский:

  • Заинская ГРЭС, работающая на мазуте;

Сибирский ФО:

  • Назаровская ГРЭС, потребляющая в качестве топлива мазут;

Южный:

  • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;

Северо-Западный:

  • Киришская на мазуте.

Список электростанций России, которые вырабатывают энергию при помощи воды, расположены на территории Ангаро-Енисейского каскада:

Енисей:

  • Саяно-Шушенская
  • Красноярская ГЭС;

Ангара:

  • Иркутская
  • Братская
  • Усть-Илимская.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Белоярская АЭС

Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции - 1760 МВт.

Курская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции - 4000 МВт.

Ленинградская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции - 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта ) - 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001-2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Атомные электростанции США

АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.

Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.

Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.

Причиной аварии стали нарушения в системе охлаждения реактора и многочисленные ошибки обслуживающего персонала. В итоге расплавилось ядерное топливо. На устранение последствий аварии ушло около одного миллиарда долларов, процесс ликвидации занял 14 лет.


После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.

Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.

В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.

С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.

Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.

Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.

Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.

В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.

США - лидер по количеству атомных станций в мире

Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.

Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.

7 июня 1954 г. в поселке Обнинское Калужской области в Физико-энергетическом институте имени А.И. Лейпунского (Лаборатория «В») был осуществлен пуск первой в мире атомной электростанции, оснащенной одним уран-графитовым канальным реактором с водяным теплоносителем АМ-1 («атом мирный») мощностью 5 МВт. С этой даты начался отсчет истории атомной энергетики.

В годы Великой Отечественной войны начала проводиться работа по созданию ядерного оружия, которую возглавил ученый-физик, академик И. В. Курчатов. В 1943 г. Курчатов создал в Москве исследовательский центр - Лаборатория № 2 - позже преобразованный в Институт атомной энергии. В 1948 г. был построен плутониевый завод с несколькими промышленными реакторами, а в августе 1949 г. была испытана первая советская атомная бомба. После того, как было организовано и освоено в промышленном масштабе производство обогащенного урана, началось активное обсуждение проблем и направлений создания энергетических ядерных реакторов для транспортного применения и получения электроэнергии и тепла. По поручению Курчатова отечественные физики Е.Л. Фейнберг и Н.А. Доллежаль начали разрабатывать проект реактора для атомной электростанции.

16 мая 1950 г. постановлением Совета Министров СССР было определено строительство трех опытных реакторов - уран-графитового с водяным охлаждением, уран-графитового с газовым охлаждением и уран-бериллиевого с газовым или жидкометаллическим охлаждением. По первоначальному плану все они поочередно должны были работать на единую паровую турбину и генератор мощностью 5000 кВт. ...

В мае 1954 г. был запущен реактор, а в июне того же года Обнинская атомная электростанция дала первый промышленный ток, открыв дорогу использованию атомной энергии в мирных целях. Обнинская АЭС успешно проработала почти 48 лет. 29 апреля 2002 г. в 11 ч. 31 мин. по московскому времени был навсегда заглушен реактор первой в мире атомной электростанции в Обнинске. Как сообщила пресс-служба Министерства Российской Федерации по атомной энергии, станция была остановлена исключительно по экономическим соображениям, поскольку «поддержание ее в безопасном состоянии с каждым годом становилось все дороже». Помимо выработки энергии, реактор Обнинской атомной электростанции также служил базой для экспериментальных исследований и для выработки изотопов для нужд медицины.

Опыт эксплуатации первой, по сути экспериментальной, атомной станции полностью подтвердил инженерно-технические решения, предложенные специалистами атомной отрасли, что позволило приступить к реализации широкомасштабной программы по строительству новых атомных электростанций в Советском Союзе. Обнинская АЭС еще во времена строительства и пуска превратилась в замечательную школу подготовки строительных и монтажных кадров, научных работников и эксплуатационного персонала. Эту свою роль АЭС выполняла многие десятилетия во время промышленной эксплуатации и многочисленных экспериментальных работ на ней. Обнинскую школу прошли такие известные в атомной энергетике специалисты как: Г. Шашарин, А. Григорьянц, Ю. Евдокимов, М. Колмановский, Б. Семенов, В. Коночкин, П. Палибин, А. Красин и многие другие.

В 1953 году на одном из совещаний министр Минсредмаша СССР В. А. Малышев поставил перед Курчатовым, Александровым и другими учеными вопрос о разработке атомного реактора для мощного ледокола, в котором нуждалась страна, чтобы существенно продлить навигацию в наших северных морях, а потом сделать ее круглогодичной. Крайнему Северу уделялось тогда особое внимание как важнейшему хозяйственному и стратегическому региону. Прошло 6 лет, и первый в мире атомный ледокол «Ленин» вышел в свое первое плавание. Этот ледокол прослужил 30 лет в тяжелых условиях Арктики. Одновременно с ледоколом строилась атомная подводная лодка (АПЛ). Правительственное решение о ее строительстве было подписано в 1952 году, а в августе 1957 года лодку спустили на воду. Эта первая советская АПЛ получила название «Ленинский комсомол». Она совершила подледный поход к Северному полюсу и благополучно вернулась на базу.

«Энергетика мира вступила в новую эпоху. Это случилось 27 июня 1954 г. Человечество еще далеко не осознало важности этой новой эпохи».

Академик А.П. Александров

«В Советском Союзе усилиями ученых и инженеров успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5000 киловатт. 27 июня атомная станция была пущена в эксплуатацию и дала электрический ток для промышленности и сельского хозяйства прилежащих районов.

Лондон, 1 июля (ТАСС). Сообщение о пуске в СССР первой промышленной электростанции на атомной энергии широко отмечается английской печатью, Московский корреспондент «Дейли уоркер» пишет, что это историческое событие «имеет неизмеримо большее значение, чем сброс первой атомной бомбы на Хиросиму.

Париж, 1 июля (ТАСС). Лондонский корреспондент агентства Франс Пресс передает, что сообщение о пуске в СССР первой в мире промышленной электростанции, работающей на атомной энергии, встречено в лондонских кругах специалистов-атомников с большим интересом. Англия, продолжает корреспондент, строит атомную электростанцию в Колдерхолле. Полагают, что она сможет вступить в строй не ранее чем через 2,5 года...

Шанхай, 1 июля (ТАСС). Откликаясь на пуски в эксплуатацию советской электростанции на атомной энергии, токийское радио передает: США и Англия также планируют строительство атомных электростанций, но завершение их строительства они намечают на 1956-1957 годы. То обстоятельство, то Советский Союз опередил Англию и Америку в деле использования атомной энергии в мирных целях, говорит о том, что советские ученые добились больших успехов в области атомной энергии. Один из выдающихся японских специалистов в области ядерной физики - профессор Иосио Фудзиока, комментируя сообщение о пуске в СССР электростанции на атомной энергии, заявил, что это является началом «новой эры».

Понравилась статья? Поделиться с друзьями: